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a b s t r a c t

It is common practice in chromatographic purity analysis of pharmaceutical manufacturing processes
to assess the quality of peak integration combined by visual investigation of the chromatogram. This
traditional method of visual chromatographic comparison is simple, but is very subjective, laborious and
seldom very quantitative. For high-purity drugs it would be particularly difficult to detect the occurrence
of an unknown impurity co-eluting with the target compound, which is present in excess compared to
any impurity. We hypothesize that this can be achieved through Multivariate Statistical Process Control
(MSPC) based on principal component analysis (PCA) modeling. In order to obtain the lowest detection
limit, different chromatographic data preprocessing methods such as time alignment, baseline correc-
tion and scaling are applied. Historical high performance liquid chromatography (HPLC) chromatograms
rincipal component analysis (PCA)
ultivariate statistical process control

MSPC)
ignal preprocessing

from a biopharmaceutical in-process analysis are used to build a normal operation condition (NOC) PCA
model. Chromatograms added simulated 0.1% impurities with varied resolutions are exposed to the NOC
model and monitored with MSPC charts. This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitoring subtle changes in the chromatographic
pattern, providing clear diagnostics of subtly deviating chromatograms. The procedure described in this
study can be implemented and operated as the HPLC analysis runs according to the process analytical
technology (PAT) concept aiming for real-time release.
. Introduction

Product purity is of utmost importance in ensuring drug quality;
onsequently, impurities must be monitored carefully. In general,
mpurities present in excess of 0.1% relative to the target com-
ound in drug substances should be detected and identified as by
he ICH requirements [1]. Analytical separation techniques based
n high performance liquid chromatography (HPLC) are commonly
sed for purity analysis in biopharmaceutical manufacturing pro-
esses. The separation and subsequent detection of compounds in
sample delivers a chromatogram, which ideally allows to identify

ndividual peaks and to attribute them to individual compounds.
ypical purity analysis in industrial processes usually deals with
manageable amount of well known peaks of compounds at rela-

ively high concentrations. This can easily be handled automatically

ith available software packages suitable for routine analysis of

hromatograms [2]. However, generic peak detection algorithms
ay often suffer from inconsistent reliability towards unknown

eaks with low signal to noise ratio and overlapping peaks of dif-
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ferent shapes. Thus, it is common practice to assess the results of
peak integration by visual inspection of the chromatogram. Visual
inspection of chromatograms has been used for decades [3] and is
a valid procedure for identification of protein samples recognized
by the regulatory authorities [4,5]. Although simple, this partly
manually method is quite laborious, extremely time consuming,
seldom quantitative and prone to subjective decision-making prob-
ably causing additional errors. To comply with increased focus on
process analytical technology (PAT) and quality by design (QbD)
(aiming for enhanced process understanding that improves process
control moving towards continuous quality verification and real-
time release of an end product) there is a need for an automatic
and timely tool for objectively monitoring the chromatographic
pattern. Even though various advanced approaches have been pub-
lished towards automatic peak detection [2,6,7], there still is a need
for a tool to detect relevant subtle differences in the chromato-
graphic pattern both quantitatively and in a statistically reliable
way.

New impurities mainly originate during the synthesis process

from raw materials, solvents, intermediates, and by-products [8].
For high-purity drugs, the target compound is present in excess
compared to any impurity. Hence, occurrence of an unanticipated
impurity co-eluting with the target compound is a particular prob-
lematic challenge. In such cases, it would be difficult or impossible

dx.doi.org/10.1016/j.chroma.2010.08.040
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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o spot the impurity peak visually and the peak integration may
herefore not be able to identify and separate impurity and target
eaks. Commercially available chromatographic pattern matching
oftware has been studied to differentiate whole chromatograms
bjectively and quantitatively [9]. Such pattern matching analy-
is tool compares chromatograms in pairs, where one is specified
s reference. However, in most processes it would be a difficult
ask to identify one representative reference chromatogram. As a
esult, several chromatograms representing common-cause vari-
tion should be included for reference. This can be achieved with
ultivariate statistical process control (MSPC) based on latent vari-

ble methods such as principal component analysis (PCA) [10,11].
SPC based on latent variable methods have been used over the

ast 20 years and has revolutionized the idea of statistical process
ontrol for multivariate purposes [12]. The entire chromatogram
an be monitored by the operator looking at only a few multivari-
te control charts, which are simple and easy to understand. MSPC
ased on PCA has previously been applied on integrated peak tables
erived from chromatographic data and proven as a valuable tool to
ompare chromatograms [7,13]. This approach is valid when peaks
re clearly unimodal (one maximum only). Such an approach can-
ot handle embedded- or non-resolved peaks, which consequently
ould be integrated as one peak. The unimodality assumption is
ost often far from reality, and therefore inclusion of as much chro-
atographic information as possible is wanted when applying PCA.

o far, MSPC based on PCA applied directly on raw chromatograms
as not yet been reported. With such a technique historical chro-
atograms can be exploited for empirical modeling to monitor and

iagnose subtle changes in future chromatographic patterns. Nev-
rtheless, multivariate data analysis using the raw chromatogram
s input data is very sensitive to chromatographic artifacts such
s baseline- and retention time drift [14]. Therefore, mathematical
reprocessing of chromatograms is a crucial step in order to gen-
rate as clean data as possible. In addition, it may be necessary to
reprocess the clean data further in order to emphasize the relevant
chemical) information before PCA is applied [15].

In this study, we develop and investigate the sensitivity of MSPC
ased on PCA for monitoring, detection and diagnosis of small and
mbedded impurity peaks appearing in analytical chromatography.
he case study considers historical HPLC chromatograms from bio-
harmaceutical in-process analysis of a high-purity drug substance.

. Theory and methods

The development of a method for chemometric quality control
f chromatographic purity follows a modified version of a previ-
usly described trajectory [16]. The trajectory is divided in three
hases; the initial phase, the training phase and the application
hase (ITA) as illustrated in Fig. 1.

In the initial phase, appropriate historical chromatograms are
ollected and prepared for PCA modeling. In the training phase
PCA model based on normal operation condition (NOC) chro-
atograms is developed (describing common-cause variation) and
SPC charts are constructed. Finally, in the application phase new

hromatograms are fitted to the model and monitored using the
ontrol charts developed in the training phase. Deviating chro-
atograms are diagnosed using contribution plots to determine

auses of the deviating behavior.

.1. Signal preprocessing
The variation in chromatograms from an HPLC analysis is the
um of uninduced- and induced variations. The uninduced variation
s all the variation originating from uninduced chemical variance,
ampling, sample work-up, and analytical variation. The most sig-
Fig. 1. The three phases according to ITA trajectory (initial, training and application
phase).

nificant uninduced variation in chromatography is baseline- and
peak drift. Novel and advanced signal preprocessing algorithms can
be applied to handle these artifacts in order to obtain data appro-
priate for subsequent data analysis. Moreover, it may be important
to scale the data before starting the chemometric analysis. Hereby,
the aim is to focus on the induced variation and emphasize the
chemical relevant information in the samples.

2.1.1. Baseline correction
Baseline correction in chromatography is commonly employed

to eliminate interferences due to baseline drift. Several baseline
correction methods are available in the literature [17,18]. One effi-
cient way of baseline correction operates in local regions of the
chromatogram and uses B-splines constructed from polynomial
pieces joined at certain positions (knots) [19]. The method operates
by gradually eliminating points in the signal furthest (northern dis-
tance) away from the fitted polynomial until the number of selected
support points (baseline points) is reached. Since the method works
in local regions it is required that the number of knots and their
position are set. This is actually an advantage as local changes in
baseline can be corrected by placing more knots in the problem-
atic regions. The method also requires input for the order of the
polynomial that is fitted between the knots. Upon selecting the
baseline-algorithm and its settings from initial data investigation,
baseline correction can be an objective and automatic preprocess-
ing.

2.1.2. Alignment
Alignment of shifted peaks can be performed in various ways.

Very reproducible chromatographic data often need only a move-
ment of the whole chromatogram a certain integer sideways for
proper alignment. This is characterized by a systematic or lin-
ear shift and can easily be handled by the correlation optimized
shifting (coshift) algorithm [20] or the recently published icoshift
algorithm [21]. Yet, if the column is changed between runs or
if samples are measured over a long period of time, more com-
plex shift correction is needed. This non-systematic or non-linear
shift is characterized by a different degree of shifts for multiple
peaks across samples and can be seen as peaks shifting indepen-
dently from one another in the same chromatogram. One effective
method, which can handle non-systematic shifts in chromato-
graphic data, is the piecewise alignment algorithm correlation
optimized warping (COW) [22,23]. Both Coshift and COW algo-

rithms align each chromatogram towards a target. The choice of
a target chromatogram is an important aspect of the alignment
methods considered here. Several methods for how to find a proper
reference chromatogram can be used. Among these are, the average
chromatogram, the first loading of a PCA model, the most inter-
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imilar chromatogram among all chromatograms or the sample
un in the middle of a sequence. However, the choice depends on
he homogeneity of the samples, on the degree of missing peaks
cross the chromatograms and many other things, which should
e considered in each individual application [24,25].

.1.3. Scaling
The choice of preprocessing procedure is crucial for perfor-

ance of the subsequent chemometric analysis. For instance a
000-fold difference in concentration for the target compound and
n impurity is not proportional to the chemical relevance of these
ompounds [15]. Thus, an appropriate preprocessing may increase
he sensitivity on detecting small impurity peaks hidden under the
arget peak by chemometric analysis and MSPC. Scaling methods
re data preprocessing approaches that divide variables by a factor,
hich is different for each variable. The aim is to adjust for the dis-
arity in fold differences between various signals by converting the
ata into differences in concentration relative to the scaling factor.
ne effective way to reduce the relative importance of large values
ithout blowing up noise is square root mean scaling. This scaling
ethod uses the square root of the mean (of individual variables)

s scaling factor.

.2. MSPC based on PCA

The goal of any statistical process control (SPC) scheme is to
onitor the performance of a process over time. Most SPC schemes

urrently in practice are based on charting a single or a small num-
er of product quality variables in a univariate way. This approach

s inadequate for processes where massive amounts of highly corre-
ated variables are being collected as is the case in chromatograms.

Latent variable methods such as PCA that handle all the vari-
bles simultaneously are required in these data-rich applications.
CA has previously proven a valuable tool to objectively compare
ntire chromatograms [26]. With PCA the information from many
orrelated variables in a chromatographic data matrix X (M × N) can
e projected down onto a low-dimensional subspace defined by a
ew latent variables or principal components TP’ and a residual part
(M × N):

= TP ′ + E (1)

here T (M × A) is the orthogonal score matrix and P (N × A) is the
rthonormal loading matrix. The chromatographic pattern is then
onitored in this A-dimensional subspace by using a few multi-

ariate control charts built from multivariate statistics. Using the
nformation contained in all the measured chromatographic vari-
bles simultaneously, these MSPC charts are much more powerful
n detecting faulty conditions than conventional single variable SPC
harts [27]. Once the MSPC chart signals a faulty alarm, the model
an be scrutinized to understand the cause of the alarm; here-
fter a possible corrective action can be taken. Variables responsible
or the faulty signal, due to a disturbance in any of the subspaces
an be projected back to the original variables and thereby iden-
ified. In general, there exist two ways to investigate the nature
f the fault that causes the control chart to signal [28,29]. Faults
hat obey the correlation structure, but have an abnormal varia-
ion (i.e. extreme variation within the model) are described by the
cores in Hotelling’s T2 also referred to as D-statistic. Hotelling [30]
ntroduced the T2 for principal components:

2 =
R∑ t2

r (2)

r=1

�2
tr

here tr is the rth principal component score, �2
tr

is the variance
f tr and R denote the number of principal components retained in
he PCA model. The D-statistic can be expected to approximately
A 1217 (2010) 6503–6510 6505

follow an F distribution and the confidence limits for the control
chart can be calculated according to Jackson [31].

Faults that break the correlation structure (i.e. variation to
the model) are represented in the sum of squared residuals also
referred to as Q-statistic:

Q =
N∑

n=1

(xn − x̂n)2 (3)

where xn and x̂n are a measurement of the nth variable and its pre-
dicted (reconstructed) value, respectively. N denotes the number of
process variables. Several ways to determine the confidence lim-
its for the Q-statistic is described [32,33]. In the present paper, a
normal distribution to approximate a weighted chi-square distri-
bution is used from which the confidence limits for the Q chart can
be calculated according to Jackson and Mudholkar [34].

Most commonly 95% or 99% confidence limits are used for both
the D- and Q-statistics to determine whether a sample is considered
an outlier. In the application described here a 99.73% confidence
limit (∼3�) is used as the upper control limit (UCL) similar to ordi-
nary Shewart control charts. From the D- and Q-statistics, two
complementary multivariate control charts are constructed. Chro-
matographic fault detection in the D-statistics could for example
be caused by an increased load on the analytical column leading
to intensified signals, but intact correlation between the chro-
matographic signals. If necessary, this load-effect may however be
handled using normalization as preprocessing. Fault detection in
the Q-statistics could for example be induced by the presence of
a new peak in the chromatogram resulting in broken correlation
between the chromatographic signals exemplified in Fig. 2. The sen-
sitivity of fault detection towards changes in the chromatogram
depends on the historical NOC data, chromatographic retention
time window, preprocessing methods, and number of components
included in the NOC model. If a new chromatogram falls outside
the UCL in the D- or Q-statistics control chart, it is characterized
as a fault and the chromatogram is considered to deviate signif-
icantly from the chromatograms included in the PCA model. It is
not only important to detect that the chromatographic pattern is
deviating, it is also important to search for the original chromato-
graphic signals responsible for the fault. One of the most widely
used approaches is using contribution plots [35–37]. Contribution
plots compute a list of each single chromatographic signal (reten-
tion time) that contribute numerically to the D- and Q-statistics
respectively. However, contribution plots do not reveal the actual
cause of the fault. Therefore, those variables responsible for the
faulty signal should be investigated, and incorporation of chemi-
cal and technical process knowledge may be necessary to diagnose
the problem and discover the root causes of the fault [27]. As an
enhancement to the way the faults are typically detected and source
determined, it is possible to calculate confidence intervals for the
residuals of individual variables, rather than only the overall resid-
ual [38].

2.3. Chromatographic simulation

The goal of chromatography is to separate different compo-
nents from a solution mixture. The resolution expresses the extent
of separation between the components in a sample, and is a
useful measure of the columns separation properties of that par-
ticular sample. The higher the resolution of the peaks in the
chromatogram, the better extent of separation between the com-

ponents the column provides. A simplified method to calculate the
resolution of a chromatogram is to use the plate model [39]. The
plate model assumes that the column can be divided into a cer-
tain number of plates, and the mass balance can be calculated for
each individual plate. This approach approximates a typical chro-
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ig. 2. Example of chromatographic pattern monitoring using PCA. (A) PCA mode
hromatogram within common-cause variation. (C) Prediction of a new chromatog

atogram curve as a Gaussian distribution curve. By doing this,
he curve width is estimated as four times the standard deviation
f the curve (4�). Sigma can be estimated by calculating the seg-
ent of the peak base (wb) intercepted by the tangents drawn to

he inflection points on either side of the peak. The inflection points
an be found by calculating max and min of the first derivative
hromatogram [40]. The parameter � is calculated as wb divided
y four. To define to what extent an impurity is hidden under the
arget peak; the peak resolution (Rs) is used [7]. Rs expresses the
fficiency of separation of two peaks in terms of their average peak
idth at base [40]:

s = 2
(tR2 − tR1)

(wb1 + wb2)
(4)

here tR1 and tR2 are the retention time of solute 1 and 2 respec-
ively (tR2 > tR1) and wb1 and wb2 are the Gaussian curve width of
olute 1 and 2 respectively (the retention time is the time from
he start of signal detection to the time of the peak height of the
aussian curve). Usually, in chromatography the plate number is
pproximately constant for similar components with similar reten-
ion times. The plate number N for a Gaussian peak is given by
40]:

=
(

tR

�

)2
(5)

With similar retention times and plate numbers the peak width
f the impurity and the target component is hence similar and a
easonable assumption is [40]:

s ≈ tR2 − tR1

wb2
(6)

Based on these assumptions an impurity peak was generated
s a pure Gaussian peak using � calculated from the target peak
n a randomly chosen chromatogram from the validation sample
et. The generated impurity was subsequently added to the vali-
ated chromatogram. As mentioned previously, impurities present

n excess of 0.1% relative to the target compound should be identi-
ed. Therefore, the relative amount of simulated impurity was kept
onstant at 0.1%. To give different degrees of chromatographic sim-
larity between the target compound and the related impurity, the
esolution (Rs) was varied from 0 (completely hidden) to 2 (well
eparated).
. Experimental

Fifty in-process samples of a high-purity drug substance were
ollected for routine quality control testing. All samples were col-
ected under NOC, i.e. the process has been running consistently
n NOC chromatograms using two principal components. (B) Prediction of a new
eviating from common-cause variation resulting in abnormal residuals.

and only high quality products have been obtained. The 50 sam-
ples represent a substantial time period so as to represent possible
physical changes in the chromatographic system as well as changes
in production arising e.g. from different batches of raw materials
being used. The purity, measured by reverse-phase high perfor-
mance liquid chromatography (RP-HPLC), was performed on a
Waters Alliance HPLC system that consists of a Waters 2690 Sep-
aration Module (combined pump and autosampler) and a Waters
2487 Dual-Wavelength UV detector (Waters, Milford, MA, USA).
The detection wavelength was 214 nm. The separation was per-
formed on a reverse phase 125 mm × 4 mm i.d. 5 �m 100 Å column
(FeF Chemicals, Køge, Denmark) by employing an isocratic elution
followed by gradient elution. The mobile phase consisted of Elu-
ent A (10%, v/v acetonitrile in sulphate buffer pH 2.5) and Eluent
B (60%, v/v acetonitrile in water). Chromatographic data was col-
lected using Empower 2 (Waters) and exported as the raw signals
vs. time (ASCII/ARW files) to Matlab version 7 (Matworks, Natick,
MA, USA) for further analysis. All software was written in Matlab
using tools from PLS Toolbox.

4. Results and discussion

4.1. Initial phase

The main goal of the training phase is to collect and pre-
pare historical NOC chromatograms for modeling. Fifty historical
HPLC chromatograms obtained for purity analysis of an indus-
trial high-purity drug substance were collected and imported into
MATLAB. The chromatograms were organized as an M × N data
matrix X, with M rows or samples and N columns or elution times.
A relevant chromatographic retention time window was chosen
around the target peak, resulting in a 50 (samples) × 1500 (reten-
tion times) dataset/matrix. Coshift alignment was applied to handle
larger systematic retention time shifts, followed by COW to han-
dle non-systematic retention time shifts. Both algorithms align the
chromatograms towards a manually chosen inter-similar target
chromatogram as illustrated in Fig. 3 The use of both alignment
methods clearly handles all the retention time shifts and delivers
adequate aligned chromatographic profiles.

To reduce baseline drift, baseline-spline was applied to the
dataset. In this case study a first order polynomial was chosen and
3 knots were positioned at retention time point 200, 1100 and 1300
(not shown).
To increase the sensitivity on detecting small impurities hidden
under the target peak different centering, scaling and transfor-
mation methods were tested. Among these are mean centering,
autoscaling, parato scaling, vast scaling, square root mean scal-
ing, and log transformation. Most of the methods are described
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NOC chromatograms, the monitoring performance depends very
ig. 3. Plot of shifted (A) and aligned (B and C) chromatograms (blue) towards a ref-
rence (red) using Coshift- and COW algorithm. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of the article.)

y [15,20]. The application of different preprocessing methods had
ery different effects on the resulting data (not shown). The meth-
ds were evaluated both by visual inspection of the resulting data
nd on the results obtained when used as input for subsequent
ata analysis in the training- and application phase. Square root
ean scaling turned out to be the most appropriate preprocess-

ng method for this particular application, as it first of all manages
o adjust for the variation in fold differences between the tar-

et peak and the minor surrounding peaks without blowing up
oise. Secondly, the characteristic appearance of the chromatogram

s kept intact, which in this case is helpful when interpreting
he contribution plot during the application phase. The result of

Fig. 5. Plot of cumulative variance captured (A) and
Fig. 4. Plot of chromatograms before (A) and after (B) square root mean scaling.

square root mean scaling applied to the data is illustrated in
Fig. 4.

4.2. Training phase

The essence of the training phase is to model the common-
cause variation present in the chromatograms obtained under
NOC. Since this NOC model exclusively determines whether a
new chromatogram is similar or deviates significantly from the
much upon adequacy and representativity of these NOC chro-
matograms. The number of samples needed to construct a NOC
model and control charts depends on the application. In this case
study a calibration set consisting of the first 40 chronologically

results of leave-one-out cross-validation (B).
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during the training phase. Nevertheless, as this study focuses on
purity analysis; we are primarily interested in the residuals. We use
the residuals to identify new, unanticipated peaks, which are not
part of the normal chromatographic pattern and thus, the model. On
Fig. 6. Scores plot of PC2 vs. PC1 (A) and loa

rdered chromatograms was used to develop a three component
CA model describing 99.97% of the common-cause variation. We
ave selected an optimal number of three components based on
he variance captured (Fig. 5a) and on the results of leave-one-out
ross-validation (Fig. 5b). Both variance captured and root mean
quared error of calibration (RMSEC) flattens out after three compo-
ents, also root mean squared error of cross-validation (RMSECV)
as the first clear local minimum at three components, indicating
hat after this point, the components just reflect noise. In addi-
ion, the inspection of loadings confirmed that only the first three
omponents reflect real chromatographic variation (Fig. 6b). As the
rincipal components higher than three are very noisy and do not
eem to contain any clear systematic structure, it is appropriate
o consider them as reflecting noise. Inspection of the scores plot
rovided in Fig. 6a showing PC2 vs. PC1, reveal that the calibration
amples are separated in two groups in PC2. The corresponding
oading for PC2 (Fig. 6b) indicated that this was due to an increased
ronting and partly decreased tailing on the target peak. This chro-

atographic difference between the two groups of calibration
amples most likely originate from analytical variation (ex. column,
olvents, pump, temperature) not handled by the preprocessing.
his chromatographic variation is also observed in Fig. 4b. However,
o systematic pattern was recognized when plotting PC2 scores vs.
hronologically ordered sample number (data not shown), which
ead to the conclusion that the grouping observed in PC2 repre-
ents common-cause-variation. The model was validated using an
ndependent validation set consisting of the last 10 chronologically
rdered chromatograms. In Fig. 7 D- and Q-statistics of calibration
nd validation samples are presented with 95%, 99% and 99.73%
UCL) confidence limits.
By inspection of the D- and Q-statistics it can be confirmed that
hree components describe the common-cause variation (Fig. 7). All
0 NOC samples are within the 95% confidence interval in the D-
tatistic chart, whereas in the Q-statistic chart two samples (∼5%)
re outside the 95% confidence interval as expected from a normal
plot on first three principal components (B).

distribution point of view. Both D- and Q-statistics are monitored
Fig. 7. Plot of (A) D-statistics and (B) Q-statistics of calibration (circle) and validation
(square) sample sets.
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Fig. 9. Plot of D-statistics (A) and Q-statistics (B) of chromatograms added 0.1% area
impurity with varying resolution (Rs 0–2). Critical area of detection in Q-statistics is
marked.
ig. 8. Simulated 0.1% area impurity peaks (red) in 9 varied resolutions from 0 to 2
efore (A) and after (B) added to a reference chromatogram (blue). (For interpreta-
ion of the references to color in this figure legend, the reader is referred to the web
ersion of the article.)

he other hand, when developing the model in the training phase,
oth the D- and Q-statistics are of interest. These statistics may
ontribute with important and complementary indications about
amples to exclude from the NOC model as they do not describe
ommon-cause variation and magnitude. In this case all 50 sam-
les used in the training phase are within their respective UCL

imits in both D- and Q-statistics charts, and are therefore assumed
o describe common-cause variation. The model can be updated
eriodically by including new predicted samples already accepted
lying within the confidence limits). In this way variations such as
easonal changes can be incorporated in the model, making it more
obust against false positive alarms.

.3. Application phase

To demonstrate the sensitivity of this chemometric quality
ontrol of chromatographic data, a validated chromatogram was
anipulated. This was done by adding a 0.1% area impurity peak

idden under the target peak in nine varied resolutions from 0 to 2
s illustrated in Fig. 8.

The nine simulated chromatograms were used to evaluate the
ethods ability to detect more or less hidden unexpected peaks. As

ndicated in the D-statistic chart (Fig. 9) none of the simulated chro-
atograms were detected, whereas in the Q-statistic chart (Fig. 9)

hromatograms added impurity peaks with a resolution down to
.5 was detected as faulty, falling outside the 3� UCL.

It would be difficult or impossible to detect such an impurity
eak visually or to identify it by peak integration using existing soft-
are. Generic peak detection algorithms commonly seek instants of

apid increase or decrease in signal intensity above a critical thresh-
ld. However, setting the threshold is a problem because too low a
hreshold generates a large number of meaningless peaks and too
igh a threshold might miss an actual one [2].

To determine chromatographic variables (retention time sig-
als) responsible for the signal in the Q-statistic chart, a residual
ontribution plot is inspected in Fig. 10. The contribution plot

llows us to diagnose the problem with the faulty chromatogram
mmediately. Clear indication of a new peak or a shoulder on the
ronting target peak is given in Fig. 10. Apparently, this variability
s not described by the principal components retained in the NOC

odel. Accordingly the added impurity with resolution 1.4 shows
Fig. 10. Plot of the faulty Rs 1.5 residual contribution (black), plotted together with
the reference (blue) and the faulty Rs 1.5 chromatogram (red) on the secondary y-
axis. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of the article.)

up as an abnormal residual variability and a faulty signal in the
Q-statistic chart.

5. Conclusions and perspectives

This study demonstrates that MSPC based on PCA applied on
chromatographic purity analysis is a powerful tool for monitor-
ing subtle changes in the chromatographic pattern. In addition it
was illustrated how contribution plots provides clear diagnostics of

faults at a glance. The chemometric quality control proved robust
towards treating chromatographic artifacts such as baseline- and
retention time drift. Applying this procedure for the detection of
new peaks makes a fully automatic monitoring of complex chro-
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atograms possible. Furthermore, if implemented and operating
hile the chromatographic purity analyses runs, this tool may con-

iderably reduce time needed for subsequent assessment of peak
ntegration. Thus, the chemometric quality control will increase
hroughput in chromatographic purity analysis and operate accord-
ng to the process analytical technology (PAT) concept aiming for
eal-time release. The actual root cause of the alarm is not auto-
atically given when applying chemometric quality control to
PLC purity analysis. Such an analysis would need incorporation of
hemical and technical process knowledge or even more advanced
nalytical techniques e.g. coupled separation systems. Multivari-
te chromatographic patterns may well be increasingly important
n the pharmaceutical industry. However, if the chemometric qual-
ty control described in this paper where to be integrated within the
harmaceutical industry, data management including smooth data
ccessibility will be a crucial requirement. Future work should be
ocused on incorporating the chemometric quality control in com-

ercial software packages for chromatographic instruments or as
art of a corporate database management system.
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